Apache Kafka – Fundamentals & Workflow

Before moving deep into the Kafka, you must aware of the main terminologies such as topics, brokers, producers and consumers. The following diagram illustrates the main terminologies and the table describes the diagram components in detail.


In the above diagram, a topic is configured into three partitions. Partition 1 has two offset factors 0 and 1. Partition 2 has four offset factors 0, 1, 2, and 3. Partition 3 has one offset factor 0. The id of the replica is same as the id of the server that hosts it.

Assume, if the replication factor of the topic is set to 3, then Kafka will create 3 identical replicas of each partition and place them in the cluster to make available for all its operations. To balance a load in cluster, each broker stores one or more of those partitions. Multiple producers and consumers can publish and retrieve messages at the same time.

S.No Components and Description
1 Topics

A stream of messages belonging to a particular category is called a topic. Data is stored in topics.

Topics are split into partitions. For each topic, Kafka keeps a mini-mum of one partition. Each such partition contains messages in an immutable ordered sequence. A partition is implemented as a set of segment files of equal sizes.

2 Partition

Topics may have many partitions, so it can handle an arbitrary amount of data.

3 Partition offset

Each partitioned message has a unique sequence id called as offset.

4 Replicas of partition

Replicas are nothing but backups of a partition. Replicas are never read or write data. They are used to prevent data loss.

5 Brokers

  • Brokers are simple system responsible for maintaining the pub-lished data. Each broker may have zero or more partitions per topic. Assume, if there are N partitions in a topic and N number of brokers, each broker will have one partition.
  • Assume if there are N partitions in a topic and more than N brokers (n + m), the first N broker will have one partition and the next M broker will not have any partition for that particular topic.
  • Assume if there are N partitions in a topic and less than N brokers (n-m), each broker will have one or more partition sharing among them. This scenario is not recommended due to unequal load distri-bution among the broker.
6 Kafka Cluster

Kafka’s having more than one broker are called as Kafka cluster. A Kafka cluster can be expanded without downtime. These clusters are used to manage the persistence and replication of message data.

7 Producers

Producers are the publisher of messages to one or more Kafka topics. Producers send data to Kafka brokers. Every time a producer pub-lishes a message to a broker, the broker simply appends the message to the last segment file. Actually, the message will be appended to a partition. Producer can also send messages to a partition of their choice.

8 Consumers

Consumers read data from brokers. Consumers subscribes to one or more topics and consume published messages by pulling data from the brokers.

9 Leader

Leader is the node responsible for all reads and writes for the given partition. Every partition has one server acting as a leader.

10 Follower

Node which follows leader instructions are called as follower. If the leader fails, one of the follower will automatically become the new leader. A follower acts as normal consumer, pulls messages and up-dates its own data store.


As of now, we discussed the core concepts of Kafka. Let us now throw some light on the workflow of Kafka.

Kafka is simply a collection of topics split into one or more partitions. A Kafka partition is a linearly ordered sequence of messages, where each message is identified by their index (called as offset). All the data in a Kafka cluster is the disjointed union of partitions. Incoming messages are written at the end of a partition and messages are sequentially read by consumers. Durability is provided by replicating messages to different brokers.

Kafka provides both pub-sub and queue based messaging system in a fast, reliable, persisted, fault-tolerance and zero downtime manner. In both cases, producers simply send the message to a topic and consumer can choose any one type of messaging system depending on their need. Let us follow the steps in the next section to understand how the consumer can choose the messaging system of their choice.

Workflow of Pub-Sub Messaging

Following is the step wise workflow of the Pub-Sub Messaging −

  • Producers send message to a topic at regular intervals.
  • Kafka broker stores all messages in the partitions configured for that particular topic. It ensures the messages are equally shared between partitions. If the producer sends two messages and there are two partitions, Kafka will store one message in the first partition and the second message in the second partition.
  • Consumer subscribes to a specific topic.
  • Once the consumer subscribes to a topic, Kafka will provide the current offset of the topic to the consumer and also saves the offset in the Zookeeper ensemble.
  • Consumer will request the Kafka in a regular interval (like 100 Ms) for new messages.
  • Once Kafka receives the messages from producers, it forwards these messages to the consumers.
  • Consumer will receive the message and process it.
  • Once the messages are processed, consumer will send an acknowledgement to the Kafka broker.
  • Once Kafka receives an acknowledgement, it changes the offset to the new value and updates it in the Zookeeper. Since offsets are maintained in the Zookeeper, the consumer can read next message correctly even during server outrages.
  • This above flow will repeat until the consumer stops the request.
  • Consumer has the option to rewind/skip to the desired offset of a topic at any time and read all the subsequent messages.

Workflow of Queue Messaging / Consumer Group

In a queue messaging system instead of a single consumer, a group of consumers having the same Group ID will subscribe to a topic. In simple terms, consumers subscribing to a topic with same Group ID are considered as a single group and the messages are shared among them. Let us check the actual workflow of this system.

  • Producers send message to a topic in a regular interval.
  • Kafka stores all messages in the partitions configured for that particular topic similar to the earlier scenario.
  • A single consumer subscribes to a specific topic, assume Topic-01 with Group ID as Group-1.
  • Kafka interacts with the consumer in the same way as Pub-Sub Messaging until new consumer subscribes the same topic, Topic-01 with the same Group ID as Group-1.
  • Once the new consumer arrives, Kafka switches its operation to share mode and shares the data between the two consumers. This sharing will go on until the number of con-sumers reach the number of partition configured for that particular topic.
  • Once the number of consumer exceeds the number of partitions, the new consumer will not receive any further message until any one of the existing consumer unsubscribes. This scenario arises because each consumer in Kafka will be assigned a minimum of one partition and once all the partitions are assigned to the existing consumers, the new consumers will have to wait.
  • This feature is also called as Consumer Group. In the same way, Kafka will provide the best of both the systems in a very simple and efficient manner.

Role of ZooKeeper

A critical dependency of Apache Kafka is Apache Zookeeper, which is a distributed configuration and synchronization service. Zookeeper serves as the coordination interface between the Kafka brokers and consumers. The Kafka servers share information via a Zookeeper cluster. Kafka stores basic metadata in Zookeeper such as information about topics, brokers, consumer offsets (queue readers) and so on.

Since all the critical information is stored in the Zookeeper and it normally replicates this data across its ensemble, failure of Kafka broker / Zookeeper does not affect the state of the Kafka cluster. Kafka will restore the state, once the Zookeeper restarts. This gives zero downtime for Kafka. The leader election between the Kafka broker is also done by using Zookeeper in the event of leader failure.


Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s